225 research outputs found

    Masked Supervised Learning for Semantic Segmentation

    Full text link
    Self-attention is of vital importance in semantic segmentation as it enables modeling of long-range context, which translates into improved performance. We argue that it is equally important to model short-range context, especially to tackle cases where not only the regions of interest are small and ambiguous, but also when there exists an imbalance between the semantic classes. To this end, we propose Masked Supervised Learning (MaskSup), an effective single-stage learning paradigm that models both short- and long-range context, capturing the contextual relationships between pixels via random masking. Experimental results demonstrate the competitive performance of MaskSup against strong baselines in both binary and multi-class segmentation tasks on three standard benchmark datasets, particularly at handling ambiguous regions and retaining better segmentation of minority classes with no added inference cost. In addition to segmenting target regions even when large portions of the input are masked, MaskSup is also generic and can be easily integrated into a variety of semantic segmentation methods. We also show that the proposed method is computationally efficient, yielding an improved performance by 10\% on the mean intersection-over-union (mIoU) while requiring 3×3\times less learnable parameters

    Iterative Graph Filtering Network for 3D Human Pose Estimation

    Full text link
    Graph convolutional networks (GCNs) have proven to be an effective approach for 3D human pose estimation. By naturally modeling the skeleton structure of the human body as a graph, GCNs are able to capture the spatial relationships between joints and learn an efficient representation of the underlying pose. However, most GCN-based methods use a shared weight matrix, making it challenging to accurately capture the different and complex relationships between joints. In this paper, we introduce an iterative graph filtering framework for 3D human pose estimation, which aims to predict the 3D joint positions given a set of 2D joint locations in images. Our approach builds upon the idea of iteratively solving graph filtering with Laplacian regularization via the Gauss-Seidel iterative method. Motivated by this iterative solution, we design a Gauss-Seidel network (GS-Net) architecture, which makes use of weight and adjacency modulation, skip connection, and a pure convolutional block with layer normalization. Adjacency modulation facilitates the learning of edges that go beyond the inherent connections of body joints, resulting in an adjusted graph structure that reflects the human skeleton, while skip connections help maintain crucial information from the input layer's initial features as the network depth increases. We evaluate our proposed model on two standard benchmark datasets, and compare it with a comprehensive set of strong baseline methods for 3D human pose estimation. Our experimental results demonstrate that our approach outperforms the baseline methods on both datasets, achieving state-of-the-art performance. Furthermore, we conduct ablation studies to analyze the contributions of different components of our model architecture and show that the skip connection and adjacency modulation help improve the model performance

    Graph Fairing Convolutional Networks for Anomaly Detection

    Full text link
    Graph convolution is a fundamental building block for many deep neural networks on graph-structured data. In this paper, we introduce a simple, yet very effective graph convolutional network with skip connections for semi-supervised anomaly detection. The proposed layerwise propagation rule of our model is theoretically motivated by the concept of implicit fairing in geometry processing, and comprises a graph convolution module for aggregating information from immediate node neighbors and a skip connection module for combining layer-wise neighborhood representations. This propagation rule is derived from the iterative solution of the implicit fairing equation via the Jacobi method. In addition to capturing information from distant graph nodes through skip connections between the network's layers, our approach exploits both the graph structure and node features for learning discriminative node representations. These skip connections are integrated by design in our proposed network architecture. The effectiveness of our model is demonstrated through extensive experiments on five benchmark datasets, achieving better or comparable anomaly detection results against strong baseline methods. We also demonstrate through an ablation study that skip connection helps improve the model performance

    Learning to recognize occluded and small objects with partial inputs

    Full text link
    Recognizing multiple objects in an image is challenging due to occlusions, and becomes even more so when the objects are small. While promising, existing multi-label image recognition models do not explicitly learn context-based representations, and hence struggle to correctly recognize small and occluded objects. Intuitively, recognizing occluded objects requires knowledge of partial input, and hence context. Motivated by this intuition, we propose Masked Supervised Learning (MSL), a single-stage, model-agnostic learning paradigm for multi-label image recognition. The key idea is to learn context-based representations using a masked branch and to model label co-occurrence using label consistency. Experimental results demonstrate the simplicity, applicability and more importantly the competitive performance of MSL against previous state-of-the-art methods on standard multi-label image recognition benchmarks. In addition, we show that MSL is robust to random masking and demonstrate its effectiveness in recognizing non-masked objects. Code and pretrained models are available on GitHub

    A Graph Encoder-Decoder Network for Unsupervised Anomaly Detection

    Full text link
    A key component of many graph neural networks (GNNs) is the pooling operation, which seeks to reduce the size of a graph while preserving important structural information. However, most existing graph pooling strategies rely on an assignment matrix obtained by employing a GNN layer, which is characterized by trainable parameters, often leading to significant computational complexity and a lack of interpretability in the pooling process. In this paper, we propose an unsupervised graph encoder-decoder model to detect abnormal nodes from graphs by learning an anomaly scoring function to rank nodes based on their degree of abnormality. In the encoding stage, we design a novel pooling mechanism, named LCPool, which leverages locality-constrained linear coding for feature encoding to find a cluster assignment matrix by solving a least-squares optimization problem with a locality regularization term. By enforcing locality constraints during the coding process, LCPool is designed to be free from learnable parameters, capable of efficiently handling large graphs, and can effectively generate a coarser graph representation while retaining the most significant structural characteristics of the graph. In the decoding stage, we propose an unpooling operation, called LCUnpool, to reconstruct both the structure and nodal features of the original graph. We conduct empirical evaluations of our method on six benchmark datasets using several evaluation metrics, and the results demonstrate its superiority over state-of-the-art anomaly detection approaches
    • …
    corecore